# From the Boxes 10284-10288. at RG-11, NASA History Division https://history.nasa.gov/rg-11_spaceflight.html 

initen states government
Memorandum

$$
\begin{aligned}
& \text { TO }: \text { M }- \text { Mr. Holmes } \\
& \text { FROM : ML - Mr. Rosen }
\end{aligned}
$$

Date: November 6. 19SI
subjecr: Large Launch Vehicle Program

Pursuant to discussions with you and Dr. Seamans, I have organized a working group consisting of members of my staff, durnented by reprecontation frox MSFC and the Office of Spececraft and Flicht, to examine the reports of several comnttees and on the besis of these raports, and our judguent and analysis, to recomend to you a large launch vehicle program which will:

1. Meet the requirements of manned space flight, and
2. Have broad and continuing nationsl utility (for other MASA and DOD missions)

Our principal background material will consist of the reports of il:s following groups:
2. The Large Launch Vehicle Planning Group (Golovin Comittee)
2. The Fleming Comnittee
3. The Luadin Cormittee
4. The Heaton Cominttee
5. The Davis-Debus Conmitice

The following people are members of the woring group:
Leunch Veaicies \& Propulsion
Mr. M. W. Rosen, Chaiman
Mr. R. B. Canright,
Mr. Eldon Hall
Mr. Elliott Mitchell
M. Normen Refel

Mr. Melvyn Savage
Mr. A. O. Tischler

## Marshall Space Flicht Center

Mr. Wi. Nrazek
Mr. Hans Mus
Mr. James B. Bramlet
Spacecraft \& Flirnt
Mr. John Disner

## mere 2


Gubj: Inero Lemein vehicie Program

Our approsch is to start out by having sub-groups make critical cvaluations of some of the most important problems. Having done tnis, we will be in a better position to formulate a recommended procram. Some of the subjects we are considering are:

1. An assessment of the problems involved in oroftal rendezvous
2. An evaluation of intermediate vehicles (C-3, C-lt, C-2 casss)
3. An eveluation of NOVA class vehicles
4. An assessment of the future course of large sclid rocket motor development
5. An cvaluation of the utility of TITAN-III for NASA missions
6. An evaluation of the realism of the spacecraft development progran (schedules, weights, performances)

Preliminary discussions within the group as to our mode of operation and the scope of our work have taken place this week. This memorandum is the result of these discussions. We have set as a terget having in your hands a recomended progran, and an evaluation of the wore critical factors affecting it, by Noveraber 20.

I need your help in the following areas:

1. Immediate access to the report of, and supporting datia used by, the Golovin Comittee.
2. The opportunity of completing our work before furtiner decisions are made in the areas we are examining. Should the need arise for a critical decision prior to November 20 , we will be available at any tire on or after Novenber 13 to give you an oral briefins of cur up-to-date findings.

Milton W. Rosen
Director, Iaunch Vehicles \& Propulsion Office of Nanned Space Flicint


H - Mo Romen






2. This report reprecens the dietirlod juchum on the goup.






 the tane recordme wade during the than sension of the fown







4. The procian we aro necomonding to you is, in mophios, the









 alcemative agwoines.

 fromitnti iccuen that ane the cubject of thic neport.

Attacmont: az atatcd
Original signed by
Milton W. Rosen
Mititan \%. R.osen
Diroctor, Imuci Voniolos A Promioios

# REPOET OF COMEINED WORKING GROUP ON VEIICLES FOR MAINED SPACE FLICHT 

## Recommendations

1. The United States should undertake a program to develop rendezvous capability on an urgent basis.
2. To exploit the possibility of accomplisning the first manned lunar landing by rendezvous, an intermediate venicle with $\mathfrak{i} i v e ~ F-I ~ e n g i n e s ~$ in the first stage and four or five J-2 engines in the second stage and one J-2 in the third stage should be developed. The venicle should be so designed that it can be modified to produce a three engine first stage, if rendezvous is difficult to achieve. The three engine vehicle provides a better matcin with a large number oi ITASA and DOD requirements and earlier flights in support of the manned lunar program.
3. The United States should place primary emphasis on the direct ilight mode for achieving the first manned lunar landing. This mode gives greater assurance of accomplishment during this decade. In order to implement the direct flight mode, a NOVA vehicle consisting of an eight F-I first stage, a four $\mathrm{K}-1$ second stage, and a one J-2 third stage should be developed on a top priority basis.
4. Large solid rockets should not be considered as a'requirement for manned lunar landing. Should these rockets be developed for other purposes, the manned space flight procram should support a solid first stage development in order to provide a backup capability for NOVA.

## FOR INIERNARL NAOA USE ONLY

5. Development of the one J-2 encine S-IVB stace should be started, aiming toward raight tests on a Saturn C.-I in late 1264. It shoula be used as the third stage of both C-5 and NOVA, and also as the escape stage in the single earth orbit rendezvous mode.
6. NASA has no present requirement for the TITAN III vehicle. Shouna ine TIMAir III be developed by the DOD, NASA should maintain continucus Jiaison with the $10 D$ development to ascertain if the venicle vari je used for future NASA needs.

## FOR INTERNAL NASA USE ONLY

## DISCUSSION

1. Rendezvous

The capability for rendezvous in space is essential to a variety of future space missions. These include crew rotation and resupply of orbitings laboratoxied and space stations, orbital assembly for future manned planetary missions, and rescue operations in orbit. For these reasons alone a vigorous high priority rendezvous develozmenti effort must be undertaken imnediately.

The United States should undertake a program to develop rencezvous capability on an urgent basis.

Space rendezvous presents the possibility of accomplishing the initial manned lunar landing mission earlier than by other means ard therefore should also be considered for that mission.

Several modes of rendezvous in space have been proposed for accomplishing the initial lunar landing mission. The farored modes are (1) a single rendezvous and docking in eaxth orbit, (2) a single rendezvous in lunar orbit by a lunar excursion vehicle whicin cieparts from a parent craft in lunar orbit, descends to the lunar surface and returns to the parent craft which remains in lunar orbit. The secona altermative offers the possibility of mission accomplishment with caly one earth launch of the same type launch vehicle of which two are required for the earth orbit rendezvous. It also offers the vossibility of a smaller and simpler lunar landins vehicle for the initiai landims attempt. However, the lunar orbit rendezvous operation entails

## FOR MTERNAL NASA USE OMLY

appreciably greater human risk than does eartin orioit rencezvouí because a missed rendezvous at the moon is fatal whereas a missed earth rendezvous simply aborts the mission. The lunar rendezvous vehicle also
-. lacks substantial radiation protection and lands only a minimal payload On the moon with limited staytime and scientific equipment.

After comparing the advantages and disadvantages of the two rendezvous modes it has been concluded that the preferred rendezvous mode is the single rendezvous in earth orbit.

It is imperative to recognize that rendezvous ofíers only a possibility of carrying out the initial landing more rapidly than by other means. Because we. will not have our inirst experimental indications of the difficulty of performins rendezvous until 1964 we will not uniil. that time have a firm basis for estimatins and scheduling the tine recuired to develop high reliaioility space rendezvous, dockins, and fuel transier operations.

The Heaton Committee investimato anthe ducking method ror earth orioit $\because e n d e z v o u s$ and concluded that the launch vehicle shoula have suficicient capability so that only one rendezvous would be required. About four rendezvous (5 vehicles) are required with the $C-3$. Hence, emphasis shifued from the $C-3$ to the $C-4$ vehicle. At that time it was believrd that acequate capability could be obtained with two C-4 vehicles. A more detailed investigation indicates that the $C-4$, when designed and built with sufficient siructural and flight margins for high coniidence,

## FOR INTERNAL NaSA USE only

is inadequate with only one rendezvous for the desired allowable spacecraft weight. The C-5 has adequate margin with one rendezvois. If several rendezvous in earth orbit are show to be entirely feasible, the use of a C-3 class vehicle would be suitable with a fueling type of operation but not with a dockins type because of tine structural considerations of combining five vehicles. Two rendazvels maneuvers with three C-4 vehicles would be suitable with either docisins or fueling. The C-5 vehicle is capable of periorming the singie eaitit. orbit rendezvous mode without refueling and is also capable of performing the lunar orbit rendezvous mode as described above.

To exploit the possibility of accomplishing the first manned linar landing by rendezvous, an intermediate venicle with five $F-1$ encines in the first stage and four or five J-2 engines in the second stage and one J-2 in the third stare should be developed. The venicle should be so designed that it can be modified to produce a three engine first stage, if rendezvous is dificicult to achieve. The three eag: ne vehicle provides a better match with a large number of NASA and 200 requirements and earlier flishts in support of the manned lunar procean.

The working group examined rendezvous more intensively than any other suoject in an attempt to understand the technical and opersitional problems involved. This effort Ied to the conclusion that the development of rendezvous, and its use ior manned lunar landing, cannot be scheauled with any reasonable degree of assurance. We urge development

## FOR liNTERNAL NASA USE ONLY

on rendezvous in its own right and so that a better assessment of its use ior manned lunar landing can be made in the next year or two. 2. Dircct Flicht

In order to inject the Apollo spacecraft into a lunar trajectocy without recourse to orbital assembly or refueling, a launch venicie with conability equivalent to that provided by an 8 F-l encine first staze is required. Such a launch vehicle presents no different order ois tennical problems than does a 5 F-I engine first stage. Iarger facilities are ; required for fabrication and test, and the first unit will tare rion min hours to build and test, but the problems are the same.

The group examined versions of NOVA suggested by the Golovin Comrittee. The chosen configuration places emphasis on achieving early manned linar landing by direct flight, with sufficient margin for both spacecrait and vehicle contingencies, and in addition, offers potential for missions beyona manned lunar landing. This configuration consists of a first stage with 8 F-l engines, a second stage with (4-1)* M-1 engines and an S-IVP thira stage, the same as the third stage of the C-5 and the second stage of the C-1B Saturn. This version has growth potential and also offers the advantage that it could utilize the four 240-inch solid first stage in it were to be developed.

We have examined the feasibility of producing this NOVA venicle ana have concluded that it can be scheduled with a reasonable defree of assurance. An optirnistic schedule would provide an eailicst caweibility in late 1966; a pessimistic schedule would provide an earliesi lunar lanãñ capability in 1968. It appears reasonable to plan on the availajility of this type of NOVA vehicle in 1967 for the achievenent of manned lunar landiñ.
*Four engines with one encine out capability

The United States should place prinary emphasis on the direct Mituth mode for achievinç the first manned lunar landing. This mode Eives gieater assurance of accomplishment during this decade. In order to irmplement the direct flight mode, a $\operatorname{HOVA}$ vehicle consisting of an eight $\mathrm{F}-1$ first:stage, a four $\mathrm{M}-1$ second stage, and a one $\mathrm{J}-2$ thirà stage should be developed on a top priority basis.

## 3. Solia Rockets

The group examined the prospects for developing lange solia rocisets for first stages of the internediate and NOVA vehicles. In particuiar, we examined the 156 -inch segraented motor and the 240 -inch monolithic motor. The group concluded that both of these versions could be developed, and that the elapsed time between now and the first moton test could be scheauled with reasonable assurance. There was considerajle uncertainty as to the number of motor tests required to solve technicai problems and to achieve a reasonable degree of reliability, to the number of stage tests which may be required and to the number of fligint tests. On the other hand, success of the F-I and J-2 engines must be assured in the program proposed here is to be undertaken at all. Since these engines must be developed to a high degree of reliability for the intermediate vehicle, it seems only sensible to use them in NOVA. These considerations led to the conclusion that the present progiam for manned lunar lanaing should be based on liquid propulsion, and that solid rociets should serve as a backup only.

Larce solid rociats should not be considered as a requiremont for manned lunar landing. Should these rockets be developd for one: purposes, the manned space ilicht procram should support a solid fitst stace development in order to provide a backup capability for Novi.

## 4. Saturn Class Vehicles

As recommenaed by the Golovin Committee, develoment of Satum * C-I shoula be continued to provide an early capability for orbital tests of Apollo.

A one J-2 engine top stage can serve the C-I, C-5, and NOVA. It also serves, with modification, as the escape tanker in tine sir:gle earth orbit rendezvous operation. In other words, in any mocie of operation recommened here, when the Apollo spacecrart is sent fro: orbit to escape, it uses the S-IVB. We have examined the devajoramit schedules of the S-IV and the S-IVB and have concluaded onat the: S-V leads the S-IVB by at least one year. Substitution of the S-IVB att this time would result in a year's celay ir first flicits on the foilo spacecraft on Saturn. Since the Apollo orbital flichts are to siant with the Saturn C-1, using the S-IV, it may be prudent and desiraise to continue this version of Saturn C-I for all of the Arpollo orbitin tests. In this case, we recommend that two or three Satuan S-l's ie devoted to vehicle tests of the S-IVB stage at an early date, in vade. to qualify the S-IVE for its future use on the $C-5$ and NOVA.

Dovclowent of the S-IVB stace should be started, aiming toward ilicht tosts on a Saturn S-I in late 19ót, and use as the third stare
 of botin C-5 and NOVA, and also as the escape stage in the single earith oroit renaczvous mocie.
$\xrightarrow{\square}$
Fhe sroup examined information available on the TIMA: III, 尤 neriomance, future availability ana develozmental paoblew.

The TITAN III and the Satuin C-I are competitive in oroital performence. The TITAM III, alone, has some escape capability wion is enhanced by adaition of a fourtin stare. The Saturn C-I has an apyieciable escape capability through the addition of a third stage. One vajo difference is that the RITAiV III core has a lo-foot diameter ani only vith difficulty could carry large diameter payioads. The Saturil C-i, on the otner hand, has an 18-foot diameter and coula be provicien with a third stage of similar diarneter, for exampe, the following combination [S-I - S-IVB - S-IV]. Escape payloads presently planncu by Insin for Centaur utilize the full 10-foot diameter of that vehicle. Future escape payloads, requiring creater launch vehicle capability, fall in the diameter class of 12 to 18 feet. Launch vehicle requirements for these payloacis. can be met by the Saturn C-I.

INASA has no present requirement for the PIMAN III venicle. ziculd the IITAX III be developed by the DOD, NASA should maintain con;ixious Liaison with the DOD development to asceriain if the vehicle ca: oo usod For îuture INASA needs.

- 7-

FOR INTERNAL NASA USE ONLY




